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Applications of Population Protocols

Chemical Reaction Networks.

HCl + NaOH → NaCl + H2O

State complexity: # species.

Accordingly for protocols:
|{0, 1, 2, 3}| = 4.

Mobile sensor networks, . . .
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Decide total sum ≥ c .

Class 2 (Modulo):
Every bird: Initially integer value
Decide total sum ≡m c

Regarding |φ|: Encode predicates.

Allowed initial states: 4,−3. Decide ≥ 0.
4x − 3y ≥ 0.

|φ|= length of string with numbers in binary.

Angluin et. al. [2006]: Expressive power: Exactly all boolean combinations of threshold and
modulo. This class is called Quantifier Free Presburger Arithmetic (QFPA).
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Procedure for following problem:

Input: Formula φ ∈ QFPA.

Output: Population Protocol deciding φ.

Synthesis procedures are compared via

state complexity of protocols in |φ|,
speed in n := #agents participating.
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To simplify protocol design, we introduce a more general model.

Careful extension such that the conversion generates fast and succinct protocols.

Population Computers (PC) extension:
1 Multiway interactions.
2 Output function.
3 Helpers.

Design succinct PCs satisfying a simple property.

Convert them to population protocols.
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CH4 + 2 · O2 → CO2 + 2 · H2O

CO2 + 6 · H2O → 6 · O2 + C6H12O6

Chemical reactions often have only few types of
reactants.
We only allow multiways with two types of
reacting states.
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Reminder: Example #pink birds ≥ 3.

i , j 7→ i + j , 0 if i + j < 3,

i , j 7→ 3, 3 if i + j ≥ 3.

Output broadcast has little in common
with rest of the protocol.

Split these two parts.

More general output function.
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Extension 3: Helpers

Auxiliary agents which do not count
towards the input.

Caution: Count is not known, only minimum is.

Idea: Computations often require
auxiliary variables/gadgets.
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To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,
every execution is finite.

Determining boundedness does not require
a complicated analysis.
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Thank you for your attention!
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