
Fast and Succinct Population Protocols for Presburger Arithmetic

Philipp Czerner, Javier Esparza, Roland Guttenberg, Martin Helfrich

Technical University of Munich

September 12 2022

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under
grant agreement No 787367

1 / 14

Introduction to Population Protocols

Population Protocols = model of computation

1

1

0

0

1

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

1

1

0

0

1

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

1

1

0

0

1

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

1

1

0

0

1

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

1

1

0

0

1

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

1

1

0

0

1

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.

1

1

0

0

1

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

1

1

0

0

1

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

Colors and numbers encode the same.
1

1

0

0

1

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

Colors and numbers encode the same.
1

1

0

0

1

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

Colors and numbers encode the same.
0

1

0

0

2

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

Colors and numbers encode the same.
0

1

0

0

2

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

Colors and numbers encode the same.
0

1

0

0

2

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

Colors and numbers encode the same.
0

1

0

0

2

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

Colors and numbers encode the same.
0

3

0

0

3

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

Colors and numbers encode the same.
0

3

0

0

3

0

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

Colors and numbers encode the same.
0

3

0

0

3

3

0

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

Colors and numbers encode the same.
3

3

3

3

3

3

3

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

Colors and numbers encode the same.

Protocol has to be correct for
all initial configurations.

3

3

3

3

3

3

3

2 / 14

Introduction to Population Protocols

Population Protocols = model of computation

anonymous finite-state agents (birds),

decide property of initial configuration,

inputs = counts of initial states,

only pairwise interactions,

output by stable consensus.

Example: Decide #pink birds ≥ 3.
States Q = {0, 1, 2, 3}.

Colors and numbers encode the same.

Protocol has to be correct for
all initial configurations.

1

0

0

0

0

1

2 / 14

Applications of Population Protocols

3 / 14

Applications of Population Protocols

Chemical Reaction Networks.

3 / 14

Applications of Population Protocols

Chemical Reaction Networks.

HCl + NaOH → NaCl + H2O

HCl

HCl

HCl

NaOH

NaOH

HCl

HCl

3 / 14

Applications of Population Protocols

Chemical Reaction Networks.

HCl + NaOH → NaCl + H2O

HCl

HCl

HCl

NaOH

NaOH

HCl

HCl

3 / 14

Applications of Population Protocols

Chemical Reaction Networks.

HCl + NaOH → NaCl + H2O

State complexity: # species.

HCl

HCl

HCl

NaCl

NaOH

H2O

HCl

3 / 14

Applications of Population Protocols

Chemical Reaction Networks.

HCl + NaOH → NaCl + H2O

State complexity: # species.

Accordingly for protocols:
|{0, 1, 2, 3}| = 4.

HCl

HCl

HCl

NaCl

NaOH

H2O

HCl

3 / 14

Applications of Population Protocols

Chemical Reaction Networks.

HCl + NaOH → NaCl + H2O

State complexity: # species.

Accordingly for protocols:
|{0, 1, 2, 3}| = 4.

Mobile sensor networks, . . .

HCl

HCl

HCl

NaCl

NaOH

H2O

HCl

3 / 14

Speed of Population Protocols

1

1

0

0

1

0

0

4 / 14

Speed of Population Protocols

In every step: choose pair of agents
uniformly at random.

1

1

0

0

1

0

0

4 / 14

Speed of Population Protocols

In every step: choose pair of agents
uniformly at random.
These agents interact in this step.

1

1

0

0

1

0

0

4 / 14

Speed of Population Protocols

In every step: choose pair of agents
uniformly at random.
These agents interact in this step.

Speed = expected number of steps
until reaching stable consensus.

0

1

0

0

2

0

0

4 / 14

Speed of Population Protocols

In every step: choose pair of agents
uniformly at random.
These agents interact in this step.

Speed = expected number of steps
until reaching stable consensus.

0

1

0

0

2

0

0

4 / 14

Speed of Population Protocols

In every step: choose pair of agents
uniformly at random.
These agents interact in this step.

Speed = expected number of steps
until reaching stable consensus.

0

1

0

0

2

0

0

4 / 14

Speed of Population Protocols

In every step: choose pair of agents
uniformly at random.
These agents interact in this step.

Speed = expected number of steps
until reaching stable consensus.

0

1

0

0

2

0

0

4 / 14

Speed of Population Protocols

In every step: choose pair of agents
uniformly at random.
These agents interact in this step.

Speed = expected number of steps
until reaching stable consensus.

0

1

0

0

2

0

0

4 / 14

Speed of Population Protocols

In every step: choose pair of agents
uniformly at random.
These agents interact in this step.

Speed = expected number of steps
until reaching stable consensus.

0

1

0

0

2

0

0

4 / 14

Speed of Population Protocols

In every step: choose pair of agents
uniformly at random.
These agents interact in this step.

Speed = expected number of steps
until reaching stable consensus.

0

1

0

0

2

0

0

4 / 14

Expressive Power

Special classes of properties.

1

1

0

0

1

0

0

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):

1

1

0

0

1

0

0

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

1

1

0

0

1

0

0

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Example: #pink birds ≥ 3.

1

1

0

0

1

0

0

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Example: #pink birds ≥ 3.
Allowed initial states: 1, 0. Decide ≥ 3.

1

1

0

0

1

0

0

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Example: #pink birds ≥ 3.
Allowed initial states: 1, 0. Decide ≥ 3.

1

0

0

1

0

0

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Example: Majority.

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Example: Majority.
Allowed initial states: 1,−1. Decide ≥ 0.

Glasses = Negative value

-1

1

-1

1

-1

1

1

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Example: Majority.
Allowed initial states: 1,−1. Decide ≥ 0.

Glasses = Negative value

-1

1

-1

1

-1

1

-1

-1

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Class 2 (Modulo):

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Class 2 (Modulo):
Every bird: Initially integer value
Decide total sum ≡m c

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Class 2 (Modulo):
Every bird: Initially integer value
Decide total sum ≡m c

Example: # pink birds is even.
1

1

0

0

1

0

1

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Class 2 (Modulo):
Every bird: Initially integer value
Decide total sum ≡m c

Example: # pink birds is even.
Allowed initial states: 1, 0. Decide ≡2 0.

1

1

0

0

1

0

1

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Class 2 (Modulo):
Every bird: Initially integer value
Decide total sum ≡m c

Example: # pink birds is even.
Allowed initial states: 1, 0. Decide ≡2 0.

1

1

1

0

1

0

1

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Class 2 (Modulo):
Every bird: Initially integer value
Decide total sum ≡m c

Angluin et. al. [2006]: Expressive power: Exactly all boolean combinations of threshold and
modulo. This class is called Quantifier Free Presburger Arithmetic (QFPA).

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Class 2 (Modulo):
Every bird: Initially integer value
Decide total sum ≡m c

Regarding |φ|: Encode predicates.

Angluin et. al. [2006]: Expressive power: Exactly all boolean combinations of threshold and
modulo. This class is called Quantifier Free Presburger Arithmetic (QFPA).

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Class 2 (Modulo):
Every bird: Initially integer value
Decide total sum ≡m c

Regarding |φ|: Encode predicates.

Allowed initial states: 4,−3. Decide ≥ 0.
4x − 3y ≥ 0.

Angluin et. al. [2006]: Expressive power: Exactly all boolean combinations of threshold and
modulo. This class is called Quantifier Free Presburger Arithmetic (QFPA).

5 / 14

Expressive Power

Special classes of properties.

Class 1 (Threshold):
Every bird: Initially integer value
Decide total sum ≥ c .

Class 2 (Modulo):
Every bird: Initially integer value
Decide total sum ≡m c

Regarding |φ|: Encode predicates.

Allowed initial states: 4,−3. Decide ≥ 0.
4x − 3y ≥ 0.

|φ|= length of string with numbers in binary.

Angluin et. al. [2006]: Expressive power: Exactly all boolean combinations of threshold and
modulo. This class is called Quantifier Free Presburger Arithmetic (QFPA).

5 / 14

Goal: Synthesis Procedure

6 / 14

Goal: Synthesis Procedure

Procedure for following problem:

6 / 14

Goal: Synthesis Procedure

Procedure for following problem:

Input: Formula φ ∈ QFPA.

6 / 14

Goal: Synthesis Procedure

Procedure for following problem:

Input: Formula φ ∈ QFPA.

Output: Population Protocol deciding φ.

6 / 14

Goal: Synthesis Procedure

Procedure for following problem:

Input: Formula φ ∈ QFPA.

Output: Population Protocol deciding φ.

Synthesis procedures are compared via

6 / 14

Goal: Synthesis Procedure

Procedure for following problem:

Input: Formula φ ∈ QFPA.

Output: Population Protocol deciding φ.

Synthesis procedures are compared via

state complexity of protocols in |φ|,

6 / 14

Goal: Synthesis Procedure

Procedure for following problem:

Input: Formula φ ∈ QFPA.

Output: Population Protocol deciding φ.

Synthesis procedures are compared via

state complexity of protocols in |φ|,
speed in n := #agents participating.

6 / 14

Prior Work

time

#states

poly(n)

2n

2|φ|poly(|φ|)

7 / 14

Prior Work

time

#states

poly(n)

2n

2|φ|poly(|φ|)

[2004]

7 / 14

Prior Work

time

#states

poly(n)

2n

2|φ|poly(|φ|)

[2004]

c + 1 states for x ≥ c is
exponential in |φ|.

7 / 14

Prior Work

time

#states

poly(n)

2n

2|φ|poly(|φ|)

[2004]

[2020]

c + 1 states for x ≥ c is
exponential in |φ|.

7 / 14

Prior Work

[2018]

[2016]

time

#states

poly(n)

2n

2|φ|poly(|φ|)

[2004]

[2020]

c + 1 states for x ≥ c is
exponential in |φ|.

7 / 14

Prior Work

[2018]

[2016]

time

#states

poly(n)

2n

2|φ|poly(|φ|)

[2004]

[2020]

c + 1 states for x ≥ c is
exponential in |φ|.

7 / 14

Overview

[2018]

[2016]

time

#states

poly(n)

2n

2|φ|poly(|φ|)

[2004]

[2020]

this paper

c + 1 states for x ≥ c is
exponential in |φ|.

7 / 14

Overview

[2018]

[2016]

this paper*

time

#states
|φ|1/4

n2

n2 log n

|φ|

2n

2|φ|poly(|φ|)

[2008]

[2004]

[2020]

c + 1 states for x ≥ c is
exponential in |φ|.

∗ : n ∈ Ω(|φ|)

7 / 14

Roadmap towards Fast and Succinct Population Protocols

8 / 14

Roadmap towards Fast and Succinct Population Protocols

To simplify protocol design, we introduce a more general model.

8 / 14

Roadmap towards Fast and Succinct Population Protocols

To simplify protocol design, we introduce a more general model.

Careful extension such that the conversion generates fast and succinct protocols.

8 / 14

Roadmap towards Fast and Succinct Population Protocols

To simplify protocol design, we introduce a more general model.

Careful extension such that the conversion generates fast and succinct protocols.

Population Computers (PC) extension:
1

2

3

8 / 14

Roadmap towards Fast and Succinct Population Protocols

To simplify protocol design, we introduce a more general model.

Careful extension such that the conversion generates fast and succinct protocols.

Population Computers (PC) extension:
1 Multiway interactions.
2

3

8 / 14

Roadmap towards Fast and Succinct Population Protocols

To simplify protocol design, we introduce a more general model.

Careful extension such that the conversion generates fast and succinct protocols.

Population Computers (PC) extension:
1 Multiway interactions.
2 Output function.
3

8 / 14

Roadmap towards Fast and Succinct Population Protocols

To simplify protocol design, we introduce a more general model.

Careful extension such that the conversion generates fast and succinct protocols.

Population Computers (PC) extension:
1 Multiway interactions.
2 Output function.
3 Helpers.

8 / 14

Roadmap towards Fast and Succinct Population Protocols

To simplify protocol design, we introduce a more general model.

Careful extension such that the conversion generates fast and succinct protocols.

Population Computers (PC) extension:
1 Multiway interactions.
2 Output function.
3 Helpers.

Design succinct PCs satisfying a simple property.

8 / 14

Roadmap towards Fast and Succinct Population Protocols

To simplify protocol design, we introduce a more general model.

Careful extension such that the conversion generates fast and succinct protocols.

Population Computers (PC) extension:
1 Multiway interactions.
2 Output function.
3 Helpers.

Design succinct PCs satisfying a simple property.

Convert them to population protocols.

8 / 14

Extension 1: Multiway interactions

O2

O2

O2

CH4

CH4

O2

O2

9 / 14

Extension 1: Multiway interactions

Reminder: Chemical reaction networks.

O2

O2

O2

CH4

CH4

O2

O2

9 / 14

Extension 1: Multiway interactions

Reminder: Chemical reaction networks.

CH4 + 2 · O2 → CO2 + 2 · H2O

CO2 + 6 · H2O → 6 · O2 + C6H12O6

O2

O2

O2

CH4

CH4

O2

O2

9 / 14

Extension 1: Multiway interactions

Reminder: Chemical reaction networks.

CH4 + 2 · O2 → CO2 + 2 · H2O

CO2 + 6 · H2O → 6 · O2 + C6H12O6

O2

O2

O2

CH4

CH4

O2

O2

9 / 14

Extension 1: Multiway interactions

Reminder: Chemical reaction networks.

CH4 + 2 · O2 → CO2 + 2 · H2O

CO2 + 6 · H2O → 6 · O2 + C6H12O6

O2

O2

O2

CO2

CH4

H2O

H2O

9 / 14

Extension 1: Multiway interactions

Reminder: Chemical reaction networks.

CH4 + 2 · O2 → CO2 + 2 · H2O

CO2 + 6 · H2O → 6 · O2 + C6H12O6

Chemical reactions often have only few types of
reactants.

O2

O2

O2

CO2

CH4

H2O

H2O

9 / 14

Extension 1: Multiway interactions

Reminder: Chemical reaction networks.

CH4 + 2 · O2 → CO2 + 2 · H2O

CO2 + 6 · H2O → 6 · O2 + C6H12O6

Chemical reactions often have only few types of
reactants.
We only allow multiways with two types of
reacting states.

O2

O2

O2

CO2

CH4

H2O

H2O

9 / 14

Extension 2: Output Function

0

1

0

0

2

0

0

10 / 14

Extension 2: Output Function

Reminder: Example #pink birds ≥ 3.

0

1

0

0

2

0

0

10 / 14

Extension 2: Output Function

Reminder: Example #pink birds ≥ 3.

i , j 7→ i + j , 0 if i + j < 3,

i , j 7→ 3, 3 if i + j ≥ 3.

0

1

0

0

2

0

0

10 / 14

Extension 2: Output Function

Reminder: Example #pink birds ≥ 3.

i , j 7→ i + j , 0 if i + j < 3,

i , j 7→ 3, 3 if i + j ≥ 3.

0

1

0

0

2

0

0

10 / 14

Extension 2: Output Function

Reminder: Example #pink birds ≥ 3.

i , j 7→ i + j , 0 if i + j < 3,

i , j 7→ 3, 3 if i + j ≥ 3.

0

3

0

0

3

0

0

10 / 14

Extension 2: Output Function

Reminder: Example #pink birds ≥ 3.

i , j 7→ i + j , 0 if i + j < 3,

i , j 7→ 3, 3 if i + j ≥ 3.

0

3

0

0

3

0

0

10 / 14

Extension 2: Output Function

Reminder: Example #pink birds ≥ 3.

i , j 7→ i + j , 0 if i + j < 3,

i , j 7→ 3, 3 if i + j ≥ 3.

0

3

0

0

3

3

0

10 / 14

Extension 2: Output Function

Reminder: Example #pink birds ≥ 3.

i , j 7→ i + j , 0 if i + j < 3,

i , j 7→ 3, 3 if i + j ≥ 3.

3

3

3

3

3

3

3

10 / 14

Extension 2: Output Function

Reminder: Example #pink birds ≥ 3.

i , j 7→ i + j , 0 if i + j < 3,

i , j 7→ 3, 3 if i + j ≥ 3.

Output broadcast has little in common
with rest of the protocol.

3

3

3

3

3

3

3

10 / 14

Extension 2: Output Function

Reminder: Example #pink birds ≥ 3.

i , j 7→ i + j , 0 if i + j < 3,

i , j 7→ 3, 3 if i + j ≥ 3.

Output broadcast has little in common
with rest of the protocol.

Split these two parts.

3

3

3

3

3

3

3

10 / 14

Extension 2: Output Function

Reminder: Example #pink birds ≥ 3.

i , j 7→ i + j , 0 if i + j < 3,

i , j 7→ 3, 3 if i + j ≥ 3.

Output broadcast has little in common
with rest of the protocol.

Split these two parts.

More general output function.
3

3

3

3

3

3

3

10 / 14

Extension 3: Helpers

2

2

2

1

11 / 14

Extension 3: Helpers

Auxiliary agents which do not count
towards the input.

2

2

2

1

11 / 14

Extension 3: Helpers

Auxiliary agents which do not count
towards the input.

Caution: Count is not known, only minimum is.

2

2

2

1

11 / 14

Extension 3: Helpers

Auxiliary agents which do not count
towards the input.

Caution: Count is not known, only minimum is.

Idea: Computations often require
auxiliary variables/gadgets.

2

2

2

1

11 / 14

Conversion of Population Computers/Main Theorems

1

1

0

0

1

0

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.

1

1

0

0

1

0

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,

1

1

0

0

1

0

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,

1

1

0

0

1

0

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,
every execution is finite.

1

1

0

0

1

0

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,
every execution is finite.

1

1

0

0

1

0

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,
every execution is finite.

0

1

0

0

2

0

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,
every execution is finite.

0

1

0

0

2

0

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,
every execution is finite.

0

1

0

0

2

0

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,
every execution is finite.

0

1

0

0

2

0

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,
every execution is finite.

0

3

0

0

3

0

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,
every execution is finite.

0

3

0

0

3

0

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,
every execution is finite.

0

3

0

0

3

3

0

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,
every execution is finite.

3

3

3

3

3

3

3

12 / 14

Conversion of Population Computers/Main Theorems

To ensure speed, we need bounded computers.
A computer is bounded if,
only counting transitions with an effect,
every execution is finite.

Determining boundedness does not require
a complicated analysis.

3

3

3

3

3

3

3

12 / 14

Conversion of Population Computers/Main Theorems

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

→→→

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

→→→

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

→→→

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

→→→

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

→→→

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

→→→

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

→→→

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

→→→

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

Population Computer

State complexity O(|φ|)

Rapid

1111

→→→

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

Population Computer

State complexity O(|φ|)

Rapid

1111

→→→

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

Population Computer

State complexity O(|φ|)

Rapid

1111

→→→

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

Population Computer

State complexity O(|φ|)

Rapid

1111

→→→

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

Population Computer

State complexity O(|φ|)

Rapid

1111

→→→

Population Protocol

State complexity O(|φ|)

Speed O(n2)

Inputs fulfilling n ∈ Ω(|φ|)

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

Population Computer

State complexity O(|φ|)

Rapid

1111

→→→

Population Protocol

State complexity O(|φ|)

Speed O(n2)

Inputs fulfilling n ∈ Ω(|φ|)

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

Population Computer

State complexity O(|φ|)

Rapid

1111

→→→

Population Protocol

State complexity O(|φ|)

Speed O(n2)

Inputs fulfilling n ∈ Ω(|φ|)

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

Population Computer

State complexity O(|φ|)

Rapid

1111

→→→

Population Protocol

State complexity O(|φ|)

Speed O(n2)

Inputs fulfilling n ∈ Ω(|φ|)

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.

13 / 14

Conversion of Population Computers/Main Theorems

Population Computer

State complexity O(|φ|)

Bounded

1111

→→→

Population Protocol

State complexity O(|φ|2)

Speed O(n3)

Inputs fulfilling n ∈ Ω(|φ|)

Population Computer

State complexity O(|φ|)

Rapid

1111

→→→

Population Protocol

State complexity O(|φ|)

Speed O(n2)

Inputs fulfilling n ∈ Ω(|φ|)

Blondin et. al. [2020]: Remove input restriction at cost of O(poly(|φ|)) states.
13 / 14

Thank you for your attention!

[2018]

[2016]

this paper*

time

#states
|φ|1/4

n2

n2 log n

|φ|

2n

2|φ|poly(|φ|)

[2008]

[2004]

[2020]

14 / 14

