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Semilinear Sets

Monoid: Cone-like object

Linear set = shifted monoid

Semilinear set: Finite union of linear sets
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Reachability is hard

Reachability sets can be non-semilinear

Goal: Is there some class of sets which

contains all reachability sets,

barely more sets, and

is easy to deal with?
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exists v s.t. v +Monoid(F ) ⊆ R

R is pseudo-linear if it has a linearization L

i.e.: R contains nice part, but rest...?

semi-pseudo-linear: finite unions

Reachability sets are semi-pseudo-linear

Here: Linearization L = N2
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Our main result

Theorem

Let R be a reachability set, L linear set.

If |L \ R| = ∞, then there

exists an infinite linear set ⊆ (L \ R).

Wrong if R is any pseudo-linear set

Semi-pseudo-linear as a class
is not approximating reachability sets
good enough yet.

Find class between reachability sets and
semi-pseudo-linear.
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Let R reachability set, L linear set. Then R ∩ L is new-semi-pseudo-linear.

Theorem (Used to be Conjecture)

Let R be a reachability set. Then for every linear L,
if |L \ R| = ∞, then there exists an infinite linear set ⊆ (L \ R).
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Thank you for your attention!

Are there questions?
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