The complexity of soundness in workflow nets

Philip Offtermatt

Joint work with Michael Blondin and Filip Mazowiecki

Processes are everywhere!

Processes are everywhere!

Option to complete:

We should be able to reach a a marking that has tokens only in \mathcal{F}

Option to complete:

We should be able to reach a a marking that has tokens only in \mathcal{F}

Option to complete: We should be able to reach a a marking that has tokens only in \mathcal{F}

Proper completion: When \mathcal{F} is marked the rest of the net is empty

Option to complete: We should be able to reach a a marking that has tokens only in \mathcal{F}

Proper completion: When \mathcal{F} is marked the rest of the net is empty

Option to complete: We should be able to reach a a marking that has tokens only in \mathcal{F}

Proper completion: When \mathcal{F} is marked the rest of the net is empty

Can we condense these into a single condition?

Philip Offtermatt

The complexity of soundness in workflow nets

A concise correctness condition

Soundness:

From any marking reachable from $\{\mathcal{I}: 1\}$, the final marking $\{\mathcal{F}: 1\}$ can be reached

 $\forall \mathsf{ runs } \pi \exists \mathsf{ run } \pi' : \{ \mathcal{I} \colon 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} \colon 1 \}$

A concise correctness condition

Soundness:

From any marking reachable from $\{\mathcal{I}: 1\}$, the final marking $\{\mathcal{F}: 1\}$ can be reached

 $\forall \text{ runs } \pi \exists \text{ run } \pi' : \{ \mathcal{I} \colon 1 \} \xrightarrow{\pi \pi'} \{ \mathcal{F} \colon 1 \}$

Extending soundness

k-soundness:

k-soundness:

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

k-soundness:

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

Generalised soundness: ∀*k*: *k*-sound

k-soundness:

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

Generalised soundness: ∀*k*: *k*-sound Structural soundness: $\exists k: k$ -sound

k-soundness:

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

Generalised soundness: $\forall k: k$ -sound **Structural soundness:** ∃*k*: *k*-sound

k-soundness:

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

Generalised soundness: $\forall k: k$ -sound

Structural soundness: $\exists k: k$ -sound

k-soundness:

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

Generalised soundness: ∀*k*: *k*-sound

k-soundness:

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

Generalised soundness: ∀*k*: *k*-sound Structural soundness: $\exists k: k$ -sound

 ${\cal F}$

k-soundness:

From any marking reachable from $\{\mathcal{I}: k\}$, the final marking $\{\mathcal{F}: k\}$ can be reached

k-soundness:

k-soundness:

k-soundness:

k-soundness:

	known results	our work
k-soundness		
Generalised soundness		
Structural soundness		

	known results	our work
	Decidable	
<i>k</i> -soundness	EXPSPACE-hard?	
	[van der Aalst;'96, '97]	
Generalised		
soundness		
Structural		
soundness		

	known results	our work
k-soundness	Decidable EXPSPACE-bard?	
X Soundiess	[van der Aalst;'96, '97]	
Generalised	Decidable	
soundness	[van Hee et al.;'04]	
Structural soundness		

	known results	our work
	Decidable	
<i>k</i> -soundness	EXPSPACE-hard?	
	[van der Aalst;'96, '97]	
Generalised	Decidable	
soundness	[van Hee et al.;'04]	
Structural	Decidable	
soundness	[Țiplea, Marinescu;'04]	

	known results	our work
<i>k</i> -soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete
Generalised soundness	Decidable [van Hee et al.;'04]	
Structural soundness	Decidable [Țiplea, Marinescu;'04]	

	known results	our work
<i>k</i> -soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete
Generalised soundness	Decidable [van Hee et al.;'04]	PSPACE- complete
Structural soundness	Decidable [Țiplea, Marinescu;'04]	

	known results	our work
<i>k</i> -soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete
Generalised soundness	Decidable [van Hee et al.;'04]	PSPACE- complete
Structural soundness	Decidable [Țiplea, Marinescu;'04]	EXPSPACE- complete

	known results	our work	
<i>k</i> -soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised soundness	Decidable [van Hee et al.;'04]	PSPACE- complete	
Structural soundness	Decidable [Țiplea, Marinescu;'04]	EXPSPACE- complete	
	known results	our work	
-----------------------	---	-----------------------	----
<i>k</i> -soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised soundness	Decidable [van Hee et al.;'04]	PSPACE- complete	2.
Structural soundness	Decidable [Țiplea, Marinescu;'04]	EXPSPACE- complete	

	known results	our work	
<i>k</i> -soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised soundness	Decidable [van Hee et al.;'04]	PSPACE- complete	2.
Structural soundness	Decidable [Țiplea, Marinescu;'04]	EXPSPACE- complete	

$\begin{array}{c} (N_{\rm SC}, \{\mathcal{I}:1\}) \text{ is} \\ N \text{ is 1-sound } \Leftrightarrow \text{ cyclic } + \text{ bounded} \end{array}$

$(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$ $N \text{ is } 1\text{-sound} \Leftrightarrow \text{cyclic} + \text{bounded}$ Any reachable marking can $\text{reach } \{\mathcal{F}: 1\}$

20

 $\{ \mathcal{I}: 1 \}$ reaches **m** implies **m** reaches $\{ \mathcal{I}: 1 \}$

9 / 20

Philip Offtermatt

 $\begin{array}{l} \{ \boldsymbol{\mathcal{I}}: 1 \} \text{ reaches } \boldsymbol{m} \text{ implies} \\ \boldsymbol{m} \text{ reaches } \{ \boldsymbol{\mathcal{F}}: 1 \} \end{array}$

20

20

$(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$ $(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$ $\Rightarrow \text{ cyclic } + \text{ bounded}$ $Any \text{ reachable marking can reach } \{\mathcal{F}: 1\}$ $Any \text{ reach } \{\mathcal{I}: 1\}$ $(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$ $\Rightarrow \text{ cyclic } + \text{ bounded}$ $(Inbounded: \{\mathcal{I}: 1\}) \text{ can reach } m \text{ which can reach } m \text{ with } m < m'$

Assume $N_{\rm sc}$ is unbounded but N is 1-sound

$\begin{array}{c} (N_{\rm SC}, \{\mathcal{I}:1\}) \text{ is} \\ N \text{ is 1-sound } \Leftrightarrow \text{ cyclic } + \text{ bounded} \end{array}$

$(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$ $N \text{ is 1-sound} \Leftrightarrow \text{cyclic} + \text{bounded}$ $In \text{ EXPSPACE}_{[Bouziane \& Finkel, '97]}$

 $(N_{
m sc},\{\mathcal{I}\colon 1\})$ is *N* is 1-sound \Leftrightarrow cyclic + bounded In EXPSPACE In EXPSPACE [Bouziane & [Rackoff, '78] Finkel, '97]

$$(N_{SC}, \{\mathcal{I}: 1\}) \text{ is}$$

$$N \text{ is 1-sound} \Leftrightarrow \text{ cyclic } + \text{ bounded}$$

$$In EXPSPACE! \qquad In EXPSPACE \\ [Bouziane \& Finkel, '97] \qquad In EXPSPACE$$

	known results	our work	
<i>k</i> -soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised soundness	Decidable [van Hee et al.;'04]	PSPACE- complete	2.
Structural soundness	Decidable [Țiplea, Marinescu;'04]	EXPSPACE- complete	

	known results	our work	
<i>k</i> -soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised soundness	Decidable [van Hee et al.;'04]	PSPACE- complete	2.
Structural soundness	Decidable [Țiplea, Marinescu;'04]	EXPSPACE- complete	

	known results	our work	
<i>k</i> -soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete	1.
Generalised soundness	Decidable [van Hee et al.;'04]	PSPACE- complete	2.
Structural soundness	Decidable [Țiplea, Marinescu;'04]	EXPSPACE- complete	

N is **generalised sound:** $\forall k : \{\mathcal{I} : k\} \rightarrow m \text{ implies } m \rightarrow \{\mathcal{F} : k\}$

N is **generalised sound:** $\forall k : \{\mathcal{I} : k\} \rightarrow m \text{ implies } m \rightarrow \{\mathcal{F} : k\}$

Witness k's are small: Not generalised sound \Rightarrow unsound for a small k

N is **generalised sound:** $\forall k : \{\mathcal{I} : k\} \rightarrow m \text{ implies } m \rightarrow \{\mathcal{F} : k\}$

Witness k's are small: Not generalised sound \Rightarrow unsound for a small k

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

N is **generalised sound:** $\forall k : {\mathcal{I} : k} \rightarrow m$ implies $m \rightarrow {\mathcal{F} : k}$

Witness k's are small: Not generalised sound \Rightarrow unsound for a small k

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not \mathbb{Z} -bounded

N is **generalised sound:** $\forall k : \{\mathcal{I} : k\} \rightarrow m \text{ implies } m \rightarrow \{\mathcal{F} : k\}$

Witness k's are small: Not generalised sound \Rightarrow unsound for a small k

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not \mathbb{Z} -bounded

Algorithm:

• Guess small k

• Check *k*-soundness: enumerate reachable markings

• If large markings are encountered: not generalised sound

Generalised soundness is in PSPACE N is generalised sound: $\forall k : \{\mathcal{I} : k\} \rightarrow m$ implies $m \rightarrow \{\mathcal{F} : k\}$ Witness k's are small: Not generalised sound \Rightarrow unsound for a small k

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not $\mathbb{Z}\text{-bounded}$

Algorithm:

• Guess small k

• Check *k*-soundness: enumerate reachable markings

• If large markings are encountered: not generalised sound

2.
A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not $\mathbb{Z}\text{-bounded}$

Algorithm:

• Guess small k

• Check *k*-soundness: enumerate reachable markings

• If large markings are encountered: not generalised sound

Z-boundedness: $\forall k \exists \vec{b}$: $\{\mathcal{I} : k\} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \vec{b} \\ \rightarrow_{\mathbb{Z}} : \mathbb{Z} \text{-reachability} - \text{may drop below } 0$

Z-boundedness: $\forall k \exists \vec{b}: \{ \mathcal{I}: k \} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \vec{b}$

 $\rightarrow_{\mathbb{Z}}$: \mathbb{Z} -reachability – may drop below 0

Z-boundedness: $\forall k \exists \vec{b}$: $\{ \mathcal{I} : k \} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \vec{b}$

 $\rightarrow_{\mathbb{Z}}$: \mathbb{Z} -reachability – may drop below 0

X Not \mathbb{Z} -bounded

Z-boundedness: $\forall k \exists \vec{b}$: $\{\mathcal{I} : k\} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \vec{b}$

 $\rightarrow_{\mathbb{Z}}:$ $\mathbb{Z}\text{-reachability}$ – may drop below 0

Recall: *k*-soundness requires boundedness from {*I* : *k*}

X Not \mathbb{Z} -bounded

Z-boundedness: $\forall k \exists \vec{b}$: $\{ \mathcal{I} : k \} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \vec{b}$

 \checkmark \mathbb{Z} -bounded

 $\{ \boldsymbol{L} : \boldsymbol{\kappa} \} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \boldsymbol{b} \\ \rightarrow_{\mathbb{Z}} : \mathbb{Z} \text{-reachability} - \text{may drop below } 0 \}$

Recall: *k*-soundness requires boundedness from {*I*: *k*}

⇒ Generalised soundness requires boundedness for all *k*

Z-boundedness: $\forall k \exists \vec{b}$: $\{\mathcal{I} : k\} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \vec{b}$

 \checkmark \mathbb{Z} -bounded

 $\rightarrow_{\mathbb{Z}}$: \mathbb{Z} -reachability – may drop below 0

Recall: *k*-soundness requires boundedness from {*I* : *k*}

⇒ Generalised soundness requires boundedness for all *k*

If a net is \mathbb{Z} -unbounded, then for some k it is unbounded over \mathbb{N}

Z-boundedness: $\forall k \exists \vec{b}$: $\{\mathcal{I} : k\} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \vec{b}$

 $\rightarrow_{\mathbb{Z}}$: \mathbb{Z} -reachability – may drop below 0

Recall: *k*-soundness requires boundedness from {*I* : *k*}

⇒ Generalised soundness requires boundedness for all *k*

If a net is \mathbb{Z} -unbounded, then for some k it is unbounded over \mathbb{N}

Z-boundedness: $\forall k \exists \vec{b}: \{\mathcal{I}: k\} \rightarrow_{\mathbb{Z}} m > 0 \text{ implies } m \leq \vec{b}$

 \checkmark \mathbb{Z} -bounded

X Not \mathbb{Z} -bounded

 $\rightarrow_{\mathbb{Z}}$: \mathbb{Z} -reachability – may drop below 0

Recall: *k*-soundness requires boundedness from {*I*: *k*}

⇒ Generalised soundness requires boundedness for all *k*

If a net is \mathbb{Z} -unbounded, then for some k it is unbounded over \mathbb{N}

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not $\mathbb{Z}\text{-bounded}$

Algorithm:

• Guess small k

• Check *k*-soundness: enumerate reachable markings

• If large markings are encountered: not generalised sound

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not $\mathbb{Z}\text{-bounded}$

Algorithm:

• Guess small k

• Check *k*-soundness: enumerate reachable markings

• If large markings are encountered: not generalised sound

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not \mathbb{Z} -bounded

Algorithm:

• Guess small k

• Check *k*-soundness: enumerate reachable markings

• If large markings are encountered: not generalised sound

 $\{ \mathcal{I} \colon k \} \stackrel{ ext{very large}}{
ightarrow} m$

$\{\mathcal{I}: k\} \xrightarrow{\text{very large}} M$ Big markings must be reached by long runs

Big markings must be reached by long runs

 $\{\mathcal{I}: k\} \stackrel{\text{very large}}{\to} m$

 $\{\mathcal{I}: k\} \stackrel{\scriptscriptstyle \mathrm{very\ large}}{
ightarrow} m$

Big markings must be reached by long runs

Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*

Big markings must be reached by long runs

Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*

Big markings must be reached by long runs

Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*

Long runs \Rightarrow Many vectors \Rightarrow Many points

Big markings must be reached by long runs

Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*

Long runs \Rightarrow Many vectors \Rightarrow Many points

 $\{\mathcal{I}: k\} \stackrel{\scriptscriptstyle \mathrm{very\ large}}{
ightarrow} m$

Big markings must be reached by long runs

Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*

Long runs \Rightarrow Many vectors \Rightarrow Many points

Enough points $\xrightarrow{Pigeonhole}$ Strict increases \Rightarrow \mathbb{Z} -unboundedness

 $\{\mathcal{I}: k\} \stackrel{\scriptscriptstyle \mathrm{very\ large}}{
ightarrow} m$

Big markings must be reached by long runs

Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*

Long runs \Rightarrow Many vectors \Rightarrow Many points

Enough points $\xrightarrow{Pigeonhole}$ Strict increases \Rightarrow \mathbb{Z} -unboundedness

 $\{\mathcal{I}: k\} \stackrel{\text{very large}}{
ightarrow} m$

Big markings must be reached by long runs

Steinitz Lemma: Reorder vectors to stay close to straight line from $\vec{0}$ to *m*

Long runs \Rightarrow Many vectors \Rightarrow Many points

Enough points $\xrightarrow{Pigeonhole}$ Strict increases \Rightarrow \mathbb{Z} -unboundedness

Big reachable markings imply \mathbb{Z} -unboundedness!

Philip Offtermatt

The complexity of soundness in workflow nets

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Algorithm:

• Guess small k

- Check *k*-soundness: enumerate reachable markings
- If large markings are encountered: not generalised sound

A helpful necessary condition: Not \mathbb{Z} -bounded \Rightarrow not generalised sound

Only enumerate small markings: Big marking reachable \Rightarrow not $\mathbb{Z}\text{-bounded}$

Algorithm:

• Guess small k

• Check *k*-soundness: enumerate reachable markings

• If large markings are encountered: not generalised sound

Checking soundness - complexity?

	known results	our work
<i>k</i> -soundness	Decidable EXPSPACE-hard? [van der Aalst;'96, '97]	EXPSPACE- complete
Generalised soundness	Decidable [van Hee et al.;'04]	PSPACE- complete
Structural soundness	Decidable [Țiplea, Marinescu;'04]	EXPSPACE- complete

Conclusion

Workflow nets formally model processes

Soundness is an intuitive correctness condition

Generalised soundness has connections to reachability over $\ensuremath{\mathbb{Z}}$