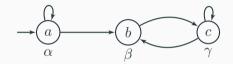
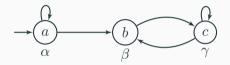
Fairness and promptness in initialized systems

Youssouf Oualhad
J^1 Léo TIBLE¹ Daniele VARACCA¹ September 12, 2022


 $^1 {\rm Laboratoire}$ d'Algorithmique, Complexité et Logique, UPEC

Model Checking problem

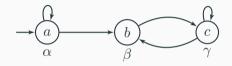
Model (of a system) \models Specification (good behaviors)


Model and specification

Kripke structure

Model and specification

Kripke structure


Linear Temporal Logic LTL is the set formulas ϕ defined using the following grammar:

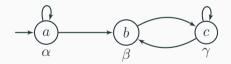
TL is the set formulas φ defined using the following grammar:

$$\phi ::= \alpha \mid \neg \phi \mid \phi \lor \phi \mid \mathsf{X} \ \phi \mid \phi \ \mathsf{U} \ \phi \ .$$

Model and specification

Kripke structure

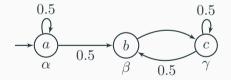
A specification


$$\begin{split} \phi &= \mathsf{F}\beta \mbox{ (Reachability)} \\ \phi &= \mathsf{G}\neg\gamma \mbox{ (Safety)} \\ \phi &= \mathsf{G}\mathsf{F}\beta = \mathsf{F}^\infty\beta \mbox{ (Büchi)} \end{split}$$

Problem

Model checking Given an LTS \mathcal{L} and an LTL formula ϕ , the *universal model checking problem* consists in checking whether $\forall \rho \in \mathsf{Runs}(\mathcal{L}), \ \rho \models \phi$.

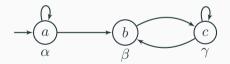
Then, we write $\mathcal{L} \models \phi$.


Example

Here, $\mathcal{L} \models \alpha$ and $\mathcal{L} \not\models \mathsf{F}^{\infty} \gamma$

Intuition If something *can* happen infinity often, it *should* happen infinity often.

Fairness : Markov chain

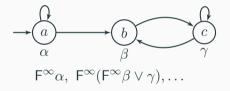

Probability mesure : $\mathbb{P}_{\mathcal{L}}$

Problem

Fair model checking Given an LTS \mathcal{L} and an LTL formula ϕ , the *fair model checking problem* consists in checking whether $\mathbb{P}_{\mathcal{L}}(\{\rho \in \mathsf{Runs}(\mathcal{L}) \mid \rho \models \phi\}) = 1.$

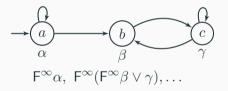
Then we write $\mathcal{L} \models_{\mathsf{AS}} \phi$.

Example



Here,
$$\mathcal{L} \models_{\mathsf{AS}} \mathsf{F}^{\infty} \gamma$$

Model Checking of LTL [SC85] Both the universal and fair model checking problem for LTL are PSPACE complete.


Goal To look at fragment of LTL. Müller formulas $L(F^{\infty})$ The set of Müller formulas is a fragment of LTL where the only temporal operator used is F^{∞} .

Example

Müller formulas $L(F^{\infty})$ The set of Müller formulas is a fragment of LTL where the only temporal operator used is F^{∞} .

Example

Müller formulas [SVV07]

- The universal model checking of $L(F^{\infty})$ is coNP complete.
- The fair model checking of $L(F^{\infty})$ is linear in $|\mathcal{L}|$ and $|\phi|$.

Nice properties

The satisfaction of $\phi \in L(F^{\infty})$ only depends on the set of states visited infinitly often (\Rightarrow prefix independence).

The set of states visited infinitly often is a Strongly Connected Set (SCS).

Nice properties

The satisfaction of $\phi \in L(F^{\infty})$ only depends on the set of states visited infinitly often (\Rightarrow prefix independence).

The set of states visited infinitly often is a Strongly Connected Set (SCS).

Universal model checking Idea : guess a "faulty" SCS, and check it is faulty : coNP.

Nice properties

The satisfaction of $\phi \in L(F^{\infty})$ only depends on the set of states visited infinitly often (\Rightarrow prefix independence).

The set of states visited infinitly often is a Strongly Connected Set (SCS).

Universal model checking Idea : guess a "faulty" SCS, and check it is faulty : coNP.

Fair model checking

Key : almost surely a run ends in a Bottom Strongly Connected Componnent (BSCC).

Idea : check each BSCC by structural induction over the formula.

Prompt Linear Temporal Logic pLTL is LTL with the added operator F_P .

 F_{P} : given k, $(\rho, k) \models \mathsf{F}_{\mathsf{P}}\phi$ iff $\exists i \leq k, (\rho[i..], k) \models \phi$ ("finally with bounded horizon").

Prompt Linear Temporal Logic pLTL is LTL with the added operator F_P .

 F_{P} : given k, $(\rho, k) \models \mathsf{F}_{\mathsf{P}}\phi$ iff $\exists i \leq k, (\rho[i..], k) \models \phi$ ("finally with bounded horizon").

Model checking Universal : $\exists k, \forall \rho \in \mathsf{Runs}(\mathcal{L}), \ (\rho, k) \models \phi$

Fair : $\exists k, \mathbb{P}_{\mathcal{L}}(\{\rho \in \mathsf{Runs}(\mathcal{L}) \mid (\rho, k) \models \phi\}) = 1$

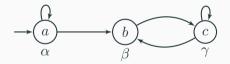
Prompt Linear Temporal Logic pLTL is LTL with the added operator F_P .

 F_{P} : given k, $(\rho, k) \models \mathsf{F}_{\mathsf{P}}\phi$ iff $\exists i \leq k, (\rho[i..], k) \models \phi$ ("finally with bounded horizon").

Model checking Universal : $\exists k, \forall \rho \in \mathsf{Runs}(\mathcal{L}), \ (\rho, k) \models \phi$

Fair : $\exists k, \mathbb{P}_{\mathcal{L}}(\{\rho \in \mathsf{Runs}(\mathcal{L}) \mid (\rho, k) \models \phi\}) = 1$

Model Checking of pLTL [KPV09] Both the universal and fair model checking problem for pLTL are PSPACE complete.


Prompt Müller

Prompt Müller fragment $L(F_P^{\infty})$

The set of prompt Müller formulas is a fragment of pLTL where the only temporal operator is $\mathsf{F}^\infty_\mathsf{P}$.

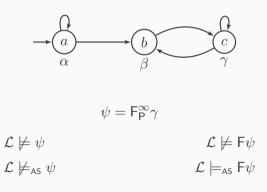
 $\mathsf{F}^\infty_\mathsf{P}\phi$: There is a bound k such that ϕ is true somewhere in each "window" of size k.

Example

 $\phi = \mathsf{F}^{\infty}_{\mathsf{P}} \gamma \qquad (aaabcbc^{\omega}, 5) \models \phi$ $(aaaabcbc^{\omega}, 5) \not\models \phi$

New Theorem

 $\bullet\,$ The universal model checking of $\mathsf{L}(\mathsf{F}^\infty_\mathsf{P})$ is coNP complete.


New Theorem

- The universal model checking of $\mathsf{L}(\mathsf{F}^\infty_\mathsf{P})$ is coNP complete.
- The fair model checking of $\mathsf{L}(\mathsf{F}^\infty_\mathsf{P})$ is coNP complete.

Idea : the issue is that the fragment is not prefix independent.

Prefix independent prompt Müller fragment $F(L^+(F_P^{\infty}))$ A formula ϕ is in $F(L^+(F_P^{\infty}))$ iff there is $\psi \in L^+(F_P^{\infty})$ such that $\phi = F\psi$.

Example

New Theorem

• The universal model checking of $\mathsf{F}\bigl(\mathsf{L}^+(\mathsf{F}^\infty_\mathsf{P})\bigr)$ is coNP complete.

New Theorem

- The universal model checking of $\mathsf{F}\big(\mathsf{L}^+(\mathsf{F}^\infty_\mathsf{P})\big)$ is coNP complete.
- The fair model checking of $F(L^+(F_P^{\infty}))$ is linear in $|\phi|$ and quadratic in |S|.

Conclusion

Model check.	LTL	$L(F^{\infty})$	pLTL	$L(F_P^\infty)$	$F(L^+(F^\infty_P))$
Universal	PSPACE-c	$coNP\text{-}\mathrm{c}$	PSPACE-c	$coNP\text{-}\mathrm{c}$	coNP-c
Fair	PSPACE-c	Linear	PSPACE-c	$coNP\text{-}\mathrm{c}$	Linear

Conclusion

Model check.	LTL	$L(F^\infty)$	pLTL	$L(F_P^\infty)$	$F(L^+(F^\infty_P))$
Universal	PSPACE-c	$coNP\text{-}\mathrm{c}$	PSPACE-c	$coNP\text{-}\mathrm{c}$	coNP-c
Fair	PSPACE-c	Linear	PSPACE-c	$coNP\text{-}\mathrm{c}$	Linear

Synthesis	LTL	$L(F^\infty)$	pLTL	$L(F_P^\infty)$	$F(L^+(F^\infty_P))$
Universal	2EXP-c	PSPACE-c	2EXP-c	?	?
Fair	2EXP-c	NP-c	2EXP-c	?	?

Conclusion

Model check.	LTL	$L(F^\infty)$	pLTL	$L(F_P^\infty)$	$F(L^+(F^\infty_P))$
Universal	PSPACE-c	$coNP\text{-}\mathrm{c}$	PSPACE-c	$coNP\text{-}\mathrm{c}$	coNP-c
Fair	PSPACE-c	Linear	PSPACE-c	$coNP\text{-}\mathrm{c}$	Linear

Synthesis	LTL	$L(F^{\infty})$	pLTL	$L(F_P^\infty)$	$F(L^+(F^\infty_P))$
Universal	2EXP-c	PSPACE-c	2EXP-c	?	?
Fair	2EXP-c	NP-c	2EXP-c	?	?

Thanks !

References

- [KPV09] Orna Kupferman, Nir Piterman, and Moshe Vardi. From liveness to promptness. Formal Methods in System Design, 34, 04 2009.
 - [PR89] A. Pnueli and Roni Rosner. On the synthesis of a reactive module. Automata Languages and Programming, 372:179–190, 01 1989.
 - [SC85] A. Sistla and Edmund Clarke. The complexity of propositional linear temporal logics. J. ACM, 32:733–749, 07 1985.
- [SVV07] Matthias Schmalz, Hagen Völzer, and Daniele Varacca. Model checking almost all paths can be less expensive than checking all paths. volume 4855, pages 532–543, 12 2007.
 - [VV12] Hagen Völzer and Daniele Varacca. Defining fairness in reactive and concurrent systems. J. ACM, 59(3):13:1–13:37, 2012.